Supporting Information

Precisely Controlled Synthesis of Hybrid Intermetallic-Metal Nanoparticles for Nitrate Electroreduction

Jiaqi Yu¹, Anna F. Kolln², Dapeng Jing³, Jinsu Oh², Hengzhou Liu⁴, Zhiyuan Qi⁵, Lin Zhou², Wenzhen Li⁴, Wenyu Huang^{1,2}

¹Department of Chemistry, Iowa State University, Ames Iowa 50011, United States

²Ames Laboratory, The U.S. Department of Energy, Ames, Iowa 50011, United States

³Materials Analysis and Research Laboratory, Iowa State University, Ames, Iowa 50010, United States

⁴Department of Chemical and Biological Engineering, Iowa State University, Ames Iowa 50011, United States

⁵Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Corresponding author

Email: whuang@iastate.edu

Sample	SnCl ₂ ,	$Cu(acac)_2$,	Cu(acac) ₂ / OAm			Cu to Sn
	mmol	mmol	Conc.,	Volume,	Inj. rate,	feeding
			mM	mL	mL/min	ratio
Sn NPs	0.5		None			
Cu ₆ Sn ₅ -Sn 1/4	0.5	0.125	125	1	0.5	1/4
Cu ₆ Sn ₅ -Sn 1/2	0.5	0.25	125	2	0.5	1/2
Cu ₆ Sn ₅ -Sn 1/1	0.5	0.5	125	4	0.5	1/1
Cu ₆ Sn ₅	0.5	1	125	8	0.5	2/1

Table S1. Experimental synthesis conditions of different Cu₆Sn₅-Sn NPs.

Scheme S1. 3D model of hybrid Cu₆Sn₅-Sn NPs and the projections from different directions.

Figure S1. HAADF-STEM and EDS mapping images of (a) hybrid Cu_6Sn_5 -Sn 1/2 and (b) Cu_6Sn_5 NPs.

Figure S2. Elemental quantification of Sn and different Cu-Sn samples by ICP-MS analysis. Blue and grey dots represent Cu and Sn amount in mmol, respectively. Red dots represent Cu/Sn ratios at corresponding nanoparticle compositions.

Figure S3. XPS spectra of (a) Sn 3*d*, (b) Cu 2*p*, and (c) Cu *LMM* of samples Cu₆Sn₅-Sn 1/1 and Cu₆Sn₅; (d) Wagner plot showing the chemical state of Cu from the same two samples together with Cu, Cu₂O, and CuO standards.

Figure S4. LSV of blank test in 1 M KOH for the hydrogen evolution character study.

Figure S5. ECSA measurement. (a,c,e,g,i,k) CV profile of Sn, bimetallic Cu-Sn NPs and Cu; (b,d,f,h,j,l) linear fitting of current density vs scan rate to calculate double layer capacitance.

Figure S6. Recycle test of nitrate electroreduction with Cu₆Sn₅-Sn 1/1 NPs. a) selectivity and FE of nitrite, nitrate consuming rate with 5 cycles; b) Chronoamperometry (CA) curve of the 5 cycles test. Test condition: tested at -0.2 V vs RHE, 12 mL 0.1 M KNO₃ + 1 M KOH in cathode; change electrolyte every 30 min; Cu₆Sn₅-Sn 1/1 NPs/Vulcan loading on carbon fiber paper 2.5 mg cm⁻²; continuously 400 rpm stir and He flow. ^a During 4th cycle, test stopped at 1300 s due to the instrument issue.

Figure S7. LSV profile of hybrid Cu₆Sn₅-Sn 1/1 NPs in different electrolytes (1 M KOH, 0.1 M KNO₂ + 1 M KOH, and 0.1 M KNO₃ + 1 M KOH).

Table S2. Selectivity and FE comparison for products in nitrate and nitrite electroreduction catalyzed by hybrid Cu₆Sn₅-Sn 1/1 NPs.

Reactant ^a	Reaction time	Conversion	Select. NH4 ⁺	Select. gas N-species	FE NH4 ⁺
0.1 M KNO3 ^b	5 h	36.1%	0.9%	6.9%	2.4%
0.1 M KNO ₂	5 h	5.1%	27.6%	72.4%	10.4%

^a Reaction solution is 0.1 M KNO₃ + 1 M KOH or 0.1 M KNO₂ + 1 M KOH; potential is -0.2 V vs RHE.

^b Selectivity and FE for nitrite are not listed in nitrate electroreduction.

Figure S8. Calibration of ammonia detected with indophenol method. (a) UV-vis spectra of the solution with different ammonia concentrations. (b) The linear fitting of absorbance at 665 nm wavelength light with concentration. The inset in b is the picture of prepared ammonia calibration standards.

Figure S9. Calibration curves of (a) nitrate and (b) nitrite detected by LC with a UV detector.

Synthesis of Cu/Vulcan (20 wt. %)

Cu/Vulcan was synthesized through a wetness impregnation method. 36.59 mg copper nitrate $(Cu(NO_3)_2 \cdot 2.5H_2O)$, Fisher Chemical) dissolved in 5 mL H₂O was added in 50 mg Vulcan XC-72 dispersed in 5 mL EtOH. The mixture was sonicated for 10 min and dried in a 80 °C oil bath for 24 h. Then, the powder of Cu²⁺ embedded on Vulcan was reduced at 500 °C for 4 h under 50 mL/min 10% H₂/Ar.

Figure S10. PXRD pattern of as-synthesized Cu/Vulcan.